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ABSTRACT
Gridding operation, which is to map non-uniform data samples on to a uniformly distributed grid, is one of the key steps in radio
astronomical data reduction process. One of the main bottlenecks of gridding is the poor computing performance, and a typical
solution for such performance issue is the implementation of multicore CPU platforms. Although such a method could usually
achieve good results, in many cases, the performance of gridding is still restricted to an extent due to the limitations of CPU,
since the main workload of gridding is a combination of a large number of single instruction, multidata stream operations, which
is more suitable for GPU, rather than CPU implementations. To meet the challenge of massive data gridding for the modern large
single-dish radio telescopes, e.g. the Five-hundred-meter Aperture Spherical radio Telescope, inspired by existing multicore
CPU gridding algorithms such as Cygrid, here we present an easy-to-install, high-performance, and open-source convolutional
gridding framework, HCGrid, in CPU-GPU heterogeneous platforms. It optimizes data search by employing multithreading
on CPU, and accelerates the convolution process by utilizing massive parallelization of GPU. In order to make HCGrid a more
adaptive solution, we also propose the strategies of thread organization and coarsening, as well as optimal parameter settings
under various GPU architectures. A thorough analysis of computing time and performance gain with several GPU parallel
optimization strategies show that it can lead to excellent performance in hybrid computing environments.

Key words: methods: data analysis – techniques: image processing – software: public release.

1 IN T RO D U C T I O N

In radio astronomy, gridding operation is a key step towards gen-
erating 2D sky maps or 3D cubes with evenly spaced grids for
scientific research or data release (Winkel, Lenz & Flöer 2016b).
However, the original observed data are usually not so uniformly
distributed. Taking the planned Commensal Radio Astronomy FAST
Survey (CRAFTS, see Li et al. 2018) of the Five-hundred-meter
Aperture Spherical Radio Telescope (FAST) (Nan 2006; Nan et al.
2011) as an example. During this survey, the FAST telescope will
be operated under the drift-scan mode, that is, the telescope will
remain fixed along local meridian, with different patches of the
sky entering the field of view due to rotation of the Earth. With
a beam size of ∼2.9 arcmin at ∼1.42 GHz, and rotation angle of
∼23.4 deg, the 19-beam receiver of FAST (Smith et al. 2017) can
achieve a beam spacing of ∼1′09′′ along declination, with super
Nyquist coverage guaranteed. While on the right ascension direction,
typically the telescope’s spectral line backends can record data once
every second (Li et al. 2018), with a maximum sampling rate of
10 times per second, thus providing a much denser coverage. Hence,
gridding is a necessity to resample such observations uniformly, for
the convenience of data analysis, visualization or storage (e.g. Léna
et al. 2012).
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However, gridding is a computing and I/O intensive job (Giovanelli
et al. 2005), comprising one of the most time-consuming steps in
the complete data reduction process. And for the latest instruments
with high data production rates such as FAST, the speed of gridding
operation should be of great concern. Our experiments have shown
that with a 16-core CPU platform, it would take ∼21 CPU hours to
perform gridding on 1 TB raw data using the multithread method.
However, the CRAFTS project is expected to generate as many as
10–20 PB-sized data every year (Li et al. 2018). That is, hundreds
of CPU hours are required to grid the raw data generated by FAST
in real-time with the existing methods, which could greatly increase
the cost of computation for this survey.

In the past decade, various studies on optimization of gridding
performance have been carried out. For example, Winkel et al.
(2016b) have presented a versatile gridding module (Cygrid: A fast
Cython-powered convolution-based gridding module for PYTHON)
for radio astronomical data reduction, featuring a single-level lookup
table based on the C++ standard template library (STL) for gridding
parallelization, as well as the Hierarchical Equal Area Latitude
Pixelation (HEALPIX)-based spherical tessellation for fast neighbour
searching. And the performance of the Cygrid code can be signifi-
cantly improved when using multiple CPU cores. However, utilizing
the STL vector, which features dynamical arrangements of storage
allocations with a relatively small initial storage volume, to construct
a lookup table for input raw data is not always practical. For example,
if the raw samples are unevenly distributed, with more data points
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in the central regions and less on all sides, the required storage
needs to be expanded in the middle part of each HEALPIX-tessellated
ring frequently. In this case, the STL vectors have to make massive
data copies of the data frequently, which would consume broad
bandwidth, thus resulting in degradation of gridding performance.

In addition, the main workload of gridding can be considered as a
combination of a large number of single-instruction, multidata stream
operations. For such tasks, the high parallelization level, as well
as throughput of GPUs brings a possibility for better performance.
Thus, Romein (2012) has developed a work-distribution scheme for
radio data gridding with GPUs, which could significantly reduce
the memory access time of computing device, and map observed
samples on to a grid with high efficiency. Merry (2016) has further
optimized this algorithm with thread coarsening strategy, making
one thread handle multiple samples simultaneously. However, the
method proposed by Romein (2012) and Merry (2016) has been
deeply customized for radio telescope arrays, strongly relying on the
spatial coherence of the interference matrix, thus cannot be easily
adapted for single-dish telescopes.

Accordingly, in order to meet the requirements of large data
volume from the latest single-dish radio telescopes, and to overcome
the shortcomings of GPU-based gridding methods mainly designed
for radio telescope array, inspired by Winkel et al. (2016b), and
based upon our previous work (Luo et al. 2018), here we present a
convolutional gridding framework with hybrid computing environ-
ments, HCGrid, for radio astronomy, which can greatly improve the
performance of the gridding process. Key features of our framework
can be summarized as follows:

(i) We have designed a gridding module with high performance
for large single-dish radio telescopes.

(ii) We partitioned the sample space based on HEALPIX (Górski
et al. 2005). To effectively utilize the storage resources, and to
accelerate the searching process of effective contributing data points,
we adopted the two-level lookup table scheme proposed by our
previous work, which can further improve the degree of parallelism
of gridding.

(iii) We have proposed our scheme for thread organization, thread
coarsening, as well as data layout for further optimization of the
performance gain.

(iv) We have conducted comparative experiments and compre-
hensive analysis with three types of mainstream GPU architectures,
Kepler, Turing, and Volta, resulting in a detailed and easy-to-use
performance optimization guide for various scenarios of applications.

The rest of this paper is organized as follows. Section 2 presents the
details of convolution-based gridding algorithms in radio astronomy
and the corresponding parallelization strategy. Section 3 focuses
on the design of our framework. And the results of the related
experiments are described in Section 4. Our conclusion is drawn
in Section 5 with further discussions.

2 G R I D D I N G A L G O R I T H M S I N A S T RO N O M Y

2.1 Convolution-based gridding algorithm

The convolution-based algorithm is among the most common choice
for gridding of radio astronomical data. For example, Kalberla et al.
(2005, 2010) have applied this technique to produce data cubes and
H I column density maps for the Leiden/Argentine/Bonn Survey,
while Winkel et al. (2016a) have adopted a similar approach in the
Effelsberg–Bonn HI Survey. The first step of convolutional gridding
is to design a target grid, and then the resampled value for each grid
cell is calculated.

The algorithm we adopted is mainly from Winkel et al. (2016b).
The output value for each targeted grid cell equals the weighted
sum of all neighbouring samples. Let S = {s1, s2, . . . , sN } denote
N non-uniformly spaced samples distributed across the RA–Dec.
plane. For nth sample sn ∈ S, its equatorial coordinates should
be expressed as (αn, δn) (αn means the right ascension, δn the
declination), with a sampled value of V[sn]. For our target grid,
suppose the RA–Dec. plane is divided into a regular grid with I ×
J cells G = {g1,1, g1,2, . . . , gI,J }. For any cell gi,j ∈ G with central
coordinates (αi, j, δi, j), its resampled value V[gi, j] is equivalent to the
weighted sum of original data S related to gi, j (Winkel et al. 2016b)

V [gi,j ] = 1

Wi,j

∑
n

V [sn]ω(αi,j , δi,j ; αn, δn). (1)

Here, sn represents any original input sample with a weighted
contribution to gi,j; ω(αi,j, δi,j; αn, δn) is a convolution kernel
(weighting function) depending on positions of the target cell and
original data points, usually related to distances between input
and output coordinates, and Wi,j = ∑

nω(αi,j, δi,j; αn, δn) is the
normalization coefficient (Winkel et al. 2016b). Since each input
sample can influence different output cells with different degrees,
with the introduction of ωi,j, the resampled output values can be
correctly calculated.

Generally speaking, the resolution limit of the target (output)
grid σ grid (i.e. the distance between any two adjacent cells) is
determined by the instrument resolution σ data) and the size of the
convolution kernel function σ kernel as σgrid =

√
σ 2

data + σ 2
kernal , with

σkernel ∼ 1
2 σdata as a common choice (Winkel et al. 2016b). Besides,

since by adopting the coordinates of FITS (Wells & Greisen 1979)
world coordinate system (WCS, see Calabretta & Greisen 2002, as
well as Mink 2006) in calculations, the gridding process can directly
perform convolutions in WCS space, which has proved to be more
convenient for astronomical users, we mainly focus on astronomy-
specific cases of WCS-targeted gridding in the following discussions.

2.2 Gridding parallelizations

In order to speed up the computing process, the gridding algorithm
is usually parallelized with multithreadings using multiple CPUs,
or CPU-GPU heterogeneous computing environments. Two types
of parallelization strategies exist, scattering and lookup table-based
gathering strategies.

The scattering strategy calculates the contribution of each input
data point to all target cells within the influence of the gridding
kernel, thus facing the risk of ‘writing competition’, that is, conflict
when calculating the same target cell value with different set of input
data. Although efficient scheduling algorithms can be invoked to
avoid the risk of such competitions (McCool; Reinders & Robison
2012), the algorithms themselves often show difficulties for GPU
implementations, thus rendering the scattering method less effective
when deploying under GPU environments (van Amesfoort et al.
2009). On the other hand, although atomic operations, which cannot
be interrupted by thread scheduling, can also be utilized to avoid writ-
ing competitions, it could also make parallel-scatterings degenerate
into serialized algorithms in the presence of densely sampled raw
data or frequent competitions (Schweizer, Besta & Hoefler 2015),
thus affecting the speed of gridding operations.

While as shown in Fig. 1, the gathering method identifies all
adjacent input points within the range of influence of the gridding
kernel for each target cell, and performs convolution with such
contributors to calculate the final results. Although the writing
competition issue no longer exists in this case, it is nearly impossible
to locate all the input points within a certain kernel radius directly
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Figure 1. Gathering method: one approach of implementing convolution-
based gridding. Each output data point (as shown with light-coloured grid)
collects its resampled value from all neighbouring input data (darker dots)
lying within a kernel (dotted circle).

for any designated cell, due to the non-uniformity of the input
samples. Thus, massive searching operations are required. To avoid
unnecessary searching operations, and to improve the capability of
the entire gridding process, the gather strategy usually performs pre-
ordering the input data in advance, partitioning the sampled data
according to their coordinate information, with the establishment of
block number – sampled point lookup table (one-to-many mapping).
After that, blocks falling into the convolution kernels of each grid
cell can be quickly determined and accessed (see Luo et al. (2018)
and references herein). HEALPIX (Górski et al. 2005) is a tessellation
scheme for the spherical surface. Its properties make it a useful tool
for the constructions of lookup table schemes. Based on HEALPIX,
the gathering strategy can take more advantages of GPU, compared
with the scattering one. Therefore, we adopt the gathering method
in our gridding framework for CPU–GPU hybrid platforms. In fact,
the main reference work of this paper, Cygrid (Winkel et al. 2016b),
is also based on the gathering method.

3 D E TA I L S O F T H E G R I D D I N G F R A M E WO R K
IMPLEMENTATION

3.1 Overview of HCGrid

Fig. 2 shows the basic architecture of HCGrid, which consists of
three modules:

(i) Initialization module for raw data initialization. This module
imports FITS-format input data files, extracting related parameters
(such as σ data, sample coordinates, as well as output resolution) from
therein, and initializes the output grid and HEALPIX with extracted
parameters.

(ii) Gridding module, which is the core module of the HCGrid
framework. This module performs data pre-ordering on CPU, and
gridding on GPU, along with data migration between CPU and GPU.

(iii) Result-processing module, which visualize the gridding
results, as well as exporting the final products as FITS files.

The gridding module as our main topic of interest for this work, we
will mainly discuss the gridding module in the following sections.
The source code of HCGrid can be accessed openly via GITHUB,1

and all suggestions and user’s feedback are welcome.

1https://github.com/HWang-Summit/HCGrid

Figure 2. The architecture of HCGrid. HCGrid consists of three modules,
including initialization, which is mainly used for initialization of parameters
involved in the calculation process; gridding, which consists of the core of
HCGrid; and finally, result processing for gridding output visualization and
data storage.

3.2 HEALPIX-based partition on sampling space

As mentioned in Section 2.2, the aim of input-data pre-ordering is
to improve the searching efficiency on the contributing data points,
as well as the performance of the gridding process, by means of
rearrangements of the original samples. Here, we adopt HEALPIX for
sampling space partition.

HEALPIX (Górski et al. 2005) is a software package for hierarchical
equal-area isolatitude pixelation on spherical surfaces, thus making
fast, accurate statistical or astrophysical analysis of massive all-sky
data sets possible. With the help of HEALPIX-based raw-data space
partition, one can determine pixel and ring indices of raw data within
a certain area, thus reducing the workload of searching operation,
and enabling more reasonable distributions of raw data covering a
spherical surface. HEALPIX provides two possible implementations of
pixel indexations, the ring scheme and the nested scheme, arranged
on isolatitude rings, or in a nested tree fashion, respectively. Both
schemes can map input samples to a one-dimensional numbered
sequence. Since with the ring scheme, the pixel indices increase
strictly linearly along the latitude ring, which makes it easier to
establish a lookup table based on positions of each pixel, here we
choose to utilize such a scheme as basis for data pre-ordering and
lookup table construct.
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Figure 3. The construction of the two-level lookup table. The 17 sampled
points can be partitioned into 9 HEALPIX pixels, and rearranged according to
their pixel indices, using the latitudinal ring structure. Then a second-level
lookup table can be established, as Rstart[1] = 1, Rstart[2] = 7, Rstart[3] = 10,
and Rstart[4] = 17.

The HEALPIX software library supports coordinate conversions
based on the WCS standard (Calabretta & Greisen 2002 and Mink
2006). Through related APIs of this library, one can make a series
of pixel manipulations. For example, given a partition level ‘Nside’,
we can obtain the corresponding ring index of a certain pixel, the
world coordinate of the pixel centre, the index number of the pixel,
the starting pixel index of the ring, and so on. Thus, the indexing
and searching-related operations can be implemented with these
HEALPIX APIs.

3.3 CPU-based multithread pre-ordering

As shown in Section 1, single-level lookup table makes it possible to
parallelize the gridding, thus improving the efficiency in evaluating
effective data samples (Winkel et al. 2016b). However, since the
gridding of FAST sky survey observations involves processing data
with finer resolution acquired from multiple drift scans covering a
large sky area, this strategy could lead to a huge lookup table for
producing a final data cube with sufficiently high resolution. In this
case, the single-level table could become one of the bottlenecks of
gridding performance, and is not applicable for FAST surveys. In
order to solve this problem, we introduce the pre-sort method, thus
saving resources through reuse of the storage space for raw data,
and making cross-block access to the raw data through establishing
lookup table between input samples and the HEALPIX spherical
tessellation possible.

In this work, we adopt the CPU-based multithread pre-ordering
algorithm and a two-level lookup table scheme proposed by our
previous work (Luo et al. 2018), to improve the efficiency of sample
points searching, with less storage required. The two-level lookup
table, based on latitudinal rings, can implement flexible conversions
between the ring indices and the pixel indices. Fig. 3 shows the pre-
ordering algorithm and the process of lookup table constructions,
with details shown as follows:

I: Pre-ordering of raw data: We performed pre-ordering of the
raw data based on pixel indices of the HEALPIX, in order to construct
a two-level lookup table more conveniently. First, given any partition

Figure 4. The searching algorithm for contributing data points. Here, rmin

and rmax are the minimum and maximum values of the latitudinal ring number
falling inside the range of influence of the convolution kernel, respectively.

level Nside, for any raw data Sn ∈ S with input coordinates (αn, δn),
one can get the pixel index Pn ∈ P to which each sampling point
belongs, with the help of related HEALPIX APIs. Secondly, we perform
key-value sorting of Pn and n by non-descending order, with n as the
subscript of data array Pn. Finally, we rearrange the raw data Sn as S′

according to sorted n, with corresponding coordinate pairs (αn, δn).
II: Construction of the first-level lookup table: As described

above, S′ and P′ denote the sorted sampling points and the cor-
responding HEALPIX pixels to which they belong. Considering the
arrays S′ and P′ to be of the same size, for a given HEALPIX pixel
(Pi ∈ P′), the corresponding starting sampled data point (Sstart ∈ S′)
should meet the following criteria: (1) the corresponding HEALPIX

pixel index should equal to Pi and (2) the array index of the starting
point is the smallest among all data that satisfies criteria 1). Based
on such principles, we construct the first-level lookup table based on
the mapping Pi �→Sstart.

III: Construction of the second-level lookup table: According
to the coding rule of HEALPIX, the sampled data points with the same
HEALPIX ring index (Ri) should be stored in a contiguous segment of
S′. Naturally, we can obtain the minimum ring index Rmin, as well
as the maximum ring index Rmax for P′. Then iteration is performed
over all the rings, searching for the starting pixel indices (Pstart) for
each ring. Accordingly, we construct the second-level lookup table
based on the mapping Ri �→Pstart, and symbolize it as Rstart[i].

3.4 Gathering-based multithread GPU gridding

The main concern of the GPU gridding process is to determine the
contributing points that falling into the radius of influence by the
gridding kernel. Such data are considered to be contributing to the
target output grid cells. And then for each target output grid cell, the
algorithm traverses the corresponding contributing input data, and
performs the convolutional computations. Fig. 4 shows the searching
process of the contributing points based on the two-level lookup table
described in Section 3.3. The detailed steps are listed as follows:

(i) The minimum and maximum ring indices Rmin and Rmax within
the range of influence of the convolution kernel are computed based
upon the kernel size.

(ii) Iteration is performed over each latitude ring Ri ∈ [Rmin, Rmax]
to search for the corresponding starting contributing pixel in P′ with
array index falls within range of [Rstart[i], Rstart[i + 1] − 1].

(iii) Search for starting contributing data sample Sstart within each
contributing HEALPIX pixel, with the help of the first-level lookup
table.
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Figure 5. The basic structure of the CUDA two-level thread hierarchy. This
example includes several two-dimension blocks nested in a two-dimensional
grid. The dimensions of the grid and the block are determined by the built-in
variables gridDim and blodkDim, respectively.

(iv) Traverse all the contributing data samples located within Ri

in S′, starting with Sstart.
(v) Convolutional computations are performed with contributing

data samples for each target grid.

3.5 The GPU-optimization strategy

We implemented GPU gridding in their native programming envi-
ronment, CUDA for NVIDIA GPUs, with a runtime system and
a set of C/C++ extensions. Compared with CPU, GPU usually
boast a much higher amount of computing cores, in the form of
Streaming Processors (SP), which can be further organized into
small groups (Streaming Multiprocessors, SMs). SM is the core
of the GPU architecture, the resource of the SM determined the
performance of the GPU when using different thread management
schemes. The optimization of computing performance for NVIDIA
GPU includes two sides: thread-based optimization and memory-
based optimization.

3.5.1 Thread management

NVIDIA proposed the concept of the hierarchical structure of
threads, to facilitate thread organization. The hierarchical structure
is a two-level thread hierarchy, consisting of thread block and
thread grid (Sanders & Kandrot 2010). CUDA can organize three-
dimensional grids and blocks, with a two-dimensional grid contain-
ing several two-dimensional blocks shown in Fig. 5 as an example
(Cheng, Grossman & McKercher 2014). And the dimensions of the
grids and blocks are determined by the built-in variables gridDim and
blockDim, respectively. Each component of the built-in variables can
be obtained through its x, y, and z numeric fields, that is, blockDim.x,
blockDim.y, and blockDim.z. When a process is executed by threads

in the thread grid level, the GPU spawns a set of grid consisting
of thread blocks (both are with user-specified dimensions), and
dispatches the thread blocks on to SMs (Veenboer, Petschow &
Romein 2017). The threads in the thread blocks can be further divided
as thread warps, which are the basic units for SM executions.

For any given data volume, the general steps to determine the grid
and block sizes are firstly to determine the size of the blocks, and
then to compute the size of the grids based on the data volume and
block sizes. The sizes of the block are determined by the properties
of the kernel function and the resources of GPU. Here, we propose
a thread organizing and coarsening strategy for thread management,
in order to improve the performance of multithread GPU gridding.
The details are shown as follows:

(i) Thread organization: We analysed the effects of thread
organization on SM executing efficiency. Since all of the input
data samples located in the HEALPIX rings are stored as one one-
dimensional array, the thread hierarchy we designed is consisted of
one-dimensional grid and one-dimensional block, that is, gridDim.y
= gridDim.z = 1, blockDim.y = blockDim.z = 1. To improve the
executing efficiency of thread warps, the thread block only allocates
threads on X direction, and each thread within one block is only
responsible for the computing task of each target output grid cell
located on the same latitude, respectively. Then the optimal number
of threads in each block for the best performance is established
according to various factors, including target output resolution, GPU
architecture, and so on. We will make a detailed analysis of the thread
organization strategy in Section 4.2.

(ii) Thread coarsening: For a higher output resolution, it is
necessary to start a larger number of threads. However, due to
limited resources available, not all threads can be executed on GPU
simultaneously. Through analysis, we found that adjacent target
output grid cells on the same latitudinal ring largely share the same
set of contributing input samples. Therefore, we apply the thread
coarsening technique, which utilizes one thread only to calculate γ

consecutive target output pixels on the same latitudinal ring, with γ

as the thread coarsening factor. With a given factor γ , each thread
only needs to perform GPU gridding once for consecutive, adjacent
γ target pixels that this thread is responsible for. In this scheme, all
these target pixels share the same starting contributing input data
samples, with weightings of each contributing input sample and the
sum of all the weights of each target pixel stored in different registers.

3.5.2 Memory management

The performance of the kernel function (here is the gridding
computing on GPU) is not only depended on the execution of the
thread warps, but also related to the memory access mode of CUDA.
The CUDA memory model has proposed a variety of programmable
memories, including registers, shared memory, local memory, and
so on. Fig. 6 shows the hierarchy structure of the CUDA memory,
from the picture, one can conclude that different memory mode has
different scope in the thread grid.

In our work, we utilize different types of CUDA memories
for HCGrid’s data storage. The optimization strategies include the
following:

(i) The raw data, gridding results and the first-level lookup table
are stored in the global memory.

(ii) Texture memory is a type of global memory accessed through
specially designated, read-only cache. Data in texture memory are
stored globally, which means that they can be accessed by all threads.
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Figure 6. The hierarchy of CUDA memory. The contents in global memory
can all be read and modified by every thread, while the constant and texture
memories are read-only.

The hardware design of this type of cache here guarantees high-
speed access of one-, two-, and three-dimensional data arrays in
texture memory. Generally, such memories are suitable for image
processing and storage of lookup tables. Thus, the second-level
lookup table (1D) is stored in an array structure in one-dimensional
texture memory, to speed up data access.

(iii) Constant memory achieves the best performance with all
threads in the warps reading data from the same memory address.
Considering all threads in one warp use the same set of gridding
parameters, e.g. kernel size, output resolution, etc., to perform the
same computations with different data, we choose to store such
parameters in the constant memory.

(iv) In every thread, for a given output grid cell, the weight and
the kernel-weighted value (‘local output’) of each contributing input
data point should be stored one by one with designated arrays, only
to be summed up to get the final cell reading once all contributing
samples have been computed. We utilize the register to store these
local output data, thus reducing the global memory access.

3.6 Basic scheme of HCGrid

In this section, we present the details of implementations of HCGrid.
The whole gridding process begins with loading raw samples, as
well as designated target grid into the framework. Then the relevant
parameters of the convolution kernel should be set, and the input
data be pre-sorted with CPU. Finally, the GPU-based convolutional
computings are performed.

(i) Loading raw data: HCGrid requires observed data and corre-
sponding coordinates pairs as input. In our preliminary tests, we adopt
the original FITS files recorded by FAST as input data format, and
transition into HDF5 (Folk et al. 2011) data format is still in progress,
since the FAST sky survey pipeline utilize HDF5 as intermediate
format (Ji et al. 2019).

(ii) Reading target output map: The most suitable size of
the target grid is determined according to the area of the target
sky coverage, as well as the beamwidth of the telescope. Those
parameters are input as settings for empty target grid of HCGrid.

(iii) Initialization of convolutional kernel: For the specific
application scenarios, the shape of the convolution kernel can lead up
to different results of the gridding process, or even affect the gridding
performance, depending on running environment. O’Sullivan (1985)
noted that the optimal convolutional kernel should be in the form of a
sinc function with infinite length. However, such a function can bring
huge computational loads. Thus, convolutional functions with finite
lengths are adopted more often. In this work, the Gaussian function
is adopted as our default kernel. The parameter initialization of the
kernel function mainly follows a previous relevant work, Winkel
et al. (2016b). Let sphere radius be the range of influence of the
convolutional kernel (rather than its half-width), it is obvious that
more accurate results can be obtained with a larger sphere radius.
However, in case of large amount of data, a larger range can pose
great challenges to computing resources. As suggested by Winkel
et al. (2016b), with radially symmetric Gaussian function as the
gridding kernel, usually the sphere radius should be set as some
value between 3σ kernel and 5σ kernel, depending on desired resolution,
where σ kernel is the standard deviation of the kernel function. The
value of σ kernel should be set according to resolution of raw data.
Assuming the resolution of the telescope to be σ data, as shown
in Winkel et al. (2016b), σ kernel ≈ 0.5σ data should be adopted to
get reasonable output. In this case, the resolution of gridded data
should be σ

gridded
data ≈ 1.12σdata. Here, we choose σ data ≈ 2.9 arcmin,

which is the approximate beam size of FAST at 1.42 GHz. And
the resolution of HEALPIX grid hpx max resolution is directly
related to σ kernel. For example, if sphere radius is set to be 3σ kernel,
hpx max resolution should be chosen as ∼σ kernel/2.

(iv) Pre-ordering of raw data: HCGrid employed four interfaces
for raw data pre-ordering, including the C+ + STL sort, paral-
lel stable sort and block indirect sort, both based on Boost,2 and
sort by key of Thrust.3 The first three are sorting interfaces for CPUs,
while the last one performs GPU sortings. Through comparative
analysis, it is found that block indirect sort can provide the highest
capability, thus making it the default choice of pre-ordering interface.

(v) GPU-based convolutional computation: As mentioned in
Section 3.5, we optimize the performance of GPU-based convo-
lution computing from two aspects, thread as well as memory
managements. Detailed analysis of such strategies will be analysed
in Section 4.2.

4 EXPERI MENTS AND RESULTS

In this section, we perform benchmark analysis of HCGrid. At
present, since the calibration and RFI flagging Yang et al. (2020)
codes for the FAST spectral line data reduction pipeline is still in
developments, it is difficult to conduct a full-scale test of HCGrid
with observed data only. Thus, in this work, we mainly use simulated

2https://www.boost.org/
3https://thrust.github.io/
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Table 1. The configurations of the workstation for experiments.

Model Type Architecture Clock Cores SMs Mem size Mem bw CUDA
(GHz) (GB) (GB s−1) capability

Intel Xeon E5-2620 CPU Sandy-EP 2.4 6 – 32 68.27 –
NVIDIA Tesla K40 GPU Kepler 0.745 2880 15 12 288.4 3.5

Intel Xeon Platinum 8255C CPU Cascade Lake 2.5 8 – 32 140.8 –
NVIDIA Tesla T4 GPU Turing 0.585 2560 40 16 320 7.5

Intel Xeon Silver 4114 CPU Skylake-EP 2.2 16 – 32 115.21 –
NVIDIA Tesla V100 GPU Volta 1.246 5120 80 16 897.0 7.0

data to demonstrate code performance. And by comparing with the
accurate results of Cygrid to illustrate the correctness of the HCGrid’s
gridding results. We generate simulated data in the similar way
as Winkel et al. (2016b), that is, one Gaussian-distributed random
value is assigned to each evenly distributed random position n with
coordinates (αn, δn) in a pre-defined field of view.

4.1 Experimental setings

As listed in Table 1, we carried out our experiments on three
workstations with different GPU hardware architectures. These
workstations can be referred to as K40 (hosting an NVIDIA Tesla
K40 GPU), T4 (equipped with an NVIDIA Tesla T4 GPU), and
V100 (with an NVIDIA Tesla V100 GPU). We have adopted CUDA
8.0.61, GPU driver version 390.116 for K40; CUDA 8.0.61, GPU
driver version 440.33.01 for T4; and CUDA 8.0.61 with GPU driver
version 440.33.01 for V100.

To achieve performance optimization, we made a full
consideration of the resource allocation under different GPU
architecture, thus reasonably allocate resources to achieve relatively
better performance.

Details of our HCGrid performance analysis include the follow-
ing:

(i) We analyse the effects of thread organization strategies on
gridding performance, with sampling space of input data, output
resolution, and the amount of the input data fixed.

(ii) We analyse the effects of the thread coarsening factors on grid-
ding performance at different output resolutions, with the sampling
space coverage and the input data amount fixed.

(iii) We analyse the dependence of HCGrid computing time
on input data amounts, with sampling space coverage and output
resolution remaining fixed.

(iv) We analyse the dependence of computing time on target grid
coverage, with the input data amount and output resolution of output
fixed.

(v) We make a relative comparison between the Cygrid and
HCGrid to illustrate the advantage of the GPU on the gridding
process.

4.2 Performance analysis

4.2.1 Performance versus thread organization strategy

With a field size of 5◦ × 5◦, the output resolutions of σ grid =
200 arcsec (which is approximately the average beam size of the
FAST across the observing band of its 19-beam receiver), and
input sample amount of N = 108, we implement various thread
configurations with different GPU architectures by configuring the
values of thread grids and thread blocks, to analyse the impact of

Figure 7. Benchmark results of thread organization strategy. With 108 input
samples, and the thread coarsening factor γ = 1, the processing time of
GPU convolution, as well as HCGrid processing time changes with different
settings of thread organization strategy.

the choice of thread organization strategies on the execution time of
GPU convolution, as well as the overall execution time of HCGrid.

Take workstation K40 with a CUDA capability of 3.5 as an
example. Here, the total number of registers available for each block
of is 64K, while our compilation report shows that the core function of
HCGrid utilizes 184 registers, without using shared memory to store
parameters. Thus, it is expected that each thread block can execute
∼64K/184 ≈ 356 threads simultaneously. Fig. 7 shows that the execu-
tion time varies with thread organization methods. With the number
of blocks along X-dimension blockdim.x = 352, and the number of
grids in the same dimension (griddim.x) as 25, the fastest execution
speed can be obtained. That is because, in this case, the value of
blockdim.x is close to the maximum thread count 356, thus enabling
the full utilization of the computing capability of the K40 GPU.

And for workstation T4 with a CUDA capability of 7.5, the total
number of registers available for each block is also 64K. However, the
number of SPs in T4 is 2560, which is smaller than K40’s 2880. That
is, T4 can execute 2560 threads at most at the same time. Partially due
to this reason, the execution time of HCGrid on T4 is longer than that
of K40. And since each SM of T4 has 64 SPs, one SM of T4 can only
execute 64 threads simultaneously. Thus, if we allocate blockdim.x =
352 as we did to K40, the thread waiting should be expected,
and thread scheduling overhead could be increased to some extent.
Therefore, experiments show that the best computing performance
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Figure 8. The processing time and performance gain of the convolution part
on GPU. The histogram represents the execution time, and the curves show
the performance gain. In our calculations, 108 samples are gridded on to a
target field of 5◦ × 5◦, with different thread coarsening factor γ .

can be obtained for blockdim.x = 64. In this configuration, it is
possible to achieve maximum thread parallelization for each SM
with minimal thread scheduling overhead.

Similarly, for workstation V100 with CUDA capability of 7.0, and
the largest SP among all our workstations, a prominent advantage in
terms of thread organization, with the shortest GPU convolution time
can be achieved. And although the architecture of V100 is different
from T4, the number of SPs in each SM of these two GPUs are the
same. Thus, the thread organization strategies for T4 can be adopted
for V100, with blockdim.x remains to be 64 for the best performance.
It can be seen in Fig. 7 that our conclusions have been confirmed.

Based on the analysis above, for the thread organization configu-
ration, the architecture of the GPU and the number of SPs in the SM
should be carefully adjusted, in order to select the most appropriate
scheme to improve the performance of GPU parallelization. For
mainstream GPU architectures by NVIDIA, including Turing, Volta,
Pascal, Kepler, Fermi, and Maxwell, the minimum number of SPs
in each SM equals to 32 (for Fermi architecture). Thus, when taking
thread configuration into consideration only, we get the empirical
equation (3) as follows:

Tmax = (Register num)/184, (2)

blockdim.x =
⎧⎨
⎩

SP 32 ≤ SP < 1
2 Tmax

Tmax SP ≥ 1
2 Tmax

other Based on actual test results
. (3)

In equation (2), Register num represents the total number of
registers available for each thread block of the GPU, and Tmax is
the maximum number of threads that each thread block can execute
simultaneously when running HCGrid. In equation (3), SP is the
number of SPs in each SM of the GPU. For example, for K40, Tmax =
356, and the number of SPs in each SM is 192, which is greater than
1
2 Tmax. Thus, the value of blockdim.x should be set as 352. However,
since thread configuration may also be affected by various factors,
such as GPU clock frequency and memory bandwidth, the GPU
thread organization parameters should be adjusted according to the
specific computing environment to get optimized results.

Figure 9. Results of computational complexity analysis. The top panel shows
the HCGrid processing time for different input data volume, while the lower
one presents the ratio of time for convolutional computations to the whole
executing time.

4.2.2 Performance versus thread coarsening strategy

When make thread coarsening experiment on K40 workstations,
Fig. 8 shows the execution time for convolution with different thread
coarsening factors (γ = 1, 2, 3) at different output grid resolutions.
The relative performance improvements for each run relative to the
processing time for the γ = 1 case are also shown in the same figure.
It can be seen that the finer the output grid resolution, the more
improvement of gridding performance can be obtained with thread
coarsening.

When starting a large number of threads, on the one hand, it is
possible that not all threads can be run concurrently on the GPU,
due to limited resources available. On the other hand, in this case,
the workload of thread scheduling would be increased, resulting
in performance degradations. Thus, thread coarsening technique is
often applied, with multiple input samples handled by one thread
only. As shown in Fig. 8, With γ = 2 or 3, the number of starting
threads is reduced, hence the scheduling workload can be reduced,
which can lead to better gridding performance as a result.

We have also performed thread coarsening experiments on T4 and
V100 workstations, with similar results to K40 obtained. Suggestions
for thread coarsening parameter settings are listed as follows:

(i) With 150 arcsec ≤ σ data ≤ 200 arcsec, it is reasonable to set
γ = 1 for better computing performance.

(ii) If 110 arcsec ≤ σ data ≤ 140 arcsec, a more reasonable choice
should be γ = 2.

(iii) γ = 3 works better for 40 arcsec ≤ σ data ≤ 100 arcsec.
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Figure 10. Analysis of HCGrid performance in relationship with field size.
The filed size varies from 0.1◦ × 0.1◦ to 60◦ × 60◦, with input sample density
as 105 deg−2.

4.2.3 Performance versus input data volume

With a input data sky coverage of 5◦ × 5◦, and a target resolu-
tion of σ grid = 200 arcsec, we have I × J = (5◦/200 arcsec) ×
(5◦/200 arcsec) = 90 × 90. The processing time of GPU convolution
and the overall computing time of HCGrid on three workstations
with different configurations for input data with 103 to 3.6 × 108

samples are shown in the top panel of Fig. 9. It can be seen that the
processing time of HCGrid increases quasi-linearly with the input
data size. If the number of input samples is with an order of magnitude
less than 105, the HCGrid computational complexity is O(1); while
with samples larger than 105, the complexity changes to O(n). Thus,
it can be concluded that the computational complexity of HCGrid
should lie somewhere between O(1) and O(n). And the lower panel
of Fig. 9 presents the ratio of the convolution time to the whole
processing time of HCGrid, with a highest reading as 1.5 per cent
for the workstation with T4 GPU. In one word, with the help of GPU,
it is demonstrated that the convolutional computations, which should
be the most computationally intensive task in the gridding process,
is no longer a time-consuming component for HCGrid.

4.2.4 Performance versus filed size

To further analyse the impact of different field sizes, we conduct
similar experiments, as shown in Fig. 9. Here, the size of the field is
varies from 0.1◦ × 0.1◦ to 60◦ × 60◦, with the input data amount as
105 samples deg−2. As depicted in Fig. 10, the test results are similar
to Fig. 9, which demonstrated that the processing time of HCGrid
is mostly influenced by input data volume, with limited relevance to
the sizes of the field.

Figure 11. Comparison of Cygrid and HCGrid. The input data volume
ranged from 103 to 3.6 × 108 sample. Here, the executing platform for Cygrid
is 16 CPU cores from the V100 workstation, while HCGrid is deployed on
the same workstation, utilizing its GPU.

4.3 Comparison with Cygrid

As mentioned above, Cygrid is a high-performance gridding imple-
mentation for CPUs. By comparison, the GPU-implemented HCGrid
proposed by this work improves the hardware utilization, adding with
the introducing of the pre-sorting operation of the input samples.
This section gives a relative comparison of HCGrid and Cygrid
performance, in order to demonstrate the advantage of GPU for
gridding operations.

The grid coverage on the target field for this experiment is 5◦ ×
5◦, with a grid resolution of σ grid = 200 arcsec, and the gridding
kernel width of ϑFWHM = 300 arcsec. The input data volume varies
from 103 to 3.6 × 108 simulated samples. The Cygrid is executed
on the V100 workstation with 16 processor cores, while HCGrid is
deployed on the same computing environment with GPU exploited.
Fig. 11 compared the executing time of Cygrid and HCGrid, it can
be seen that the computational complexity of Cygrid, which is closer
to O(n) (Winkel et al. 2016b), has been verified by the trend in
the corresponding curve. And with the number of input samples
exceeding 105, the executing speed of HCGrid is several times faster
than Cygrid. However, when dealing with smaller batches of input,
data transmissions between CPU and GPU cause notable degradation
in performance of HCGrid, resulting in a slower speed than Cygrid. In
case of larger amount of input data, the performance improvements
due to GPU-implemented convolutions far exceeds the overhead
of such data transmissions, leading to significantly better overall
performance of HCGrid.

Meanwhile, to verify the correctness of gridding results, we adopt
the results produced by Cygrid, which is a mature and widely used
gridding module, as our benchmark. For a 5◦ × 5◦ sampling space
with 106 data samples and the same set of parameters (including
beam size, convolution kernel, etc.), Figs 12 and 13 show the
gridding products and the corresponding differential maps between
HCGrid and Cygrid for 25 and 50 point sources, respectively. It
can be seen that the results produced by HCGrid are generally
compatible with those from Cygrid, with all sources clearly recon-
structed and resolved. The differential maps show that the difference
between two sets of results, which can be explained by different
hardware architectures between CPU and GPU, can be largely
neglected.
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Figure 12. The gridding results of Cygrid (left) and HCGrid (middle), and the differential map between two sets of results (right) for a 5◦ × 5◦ sampling space
with 25 point sources.

Figure 13. The gridding results of Cygrid (left) and HCGrid (middle), and the differential map between two sets of results (right) for a 5◦ × 5◦ sampling space
with 50 point sources.

5 C O N C L U S I O N S

In this paper, we introduce a convolution-based gridding framework
HCGrid for radio astronomy in hybrid computing environments,
in order to meet the requirements of large single-dish radio tele-
scopes such as FAST. HCGrid features the first implementation
of convolution-based gridding with gather strategy for CPU–GPU
heterogeneous platform.

To increase the searching efficiency of raw input samples, HCGrid
makes full use of advantages of both CPU and GPU. It implemented
a fast parallel ordering algorithm based on HEALPIX on CPU,
established a two-level lookup table to speed up the sample searching
process, and accelerated the convolution operation using GPU with
several optimization strategies.

To ensure the scalability of HCGrid, we have performed exper-
iments on three workstations with various GPU architectures. All
of the performance optimization strategies have been tested on all
three architectures, with general guidance for related performance
parameter optimizations presented. And compared with CPU imple-
mentations of gridding process, HCGrid has the performance advan-
tage due to GPU-based carried out the time-consuming convolution
computing on the GPU.

Further improvements of the HCGrid is expected, as minor bugs
being further tested and removed, and related user manual being
continuously updated. Also, the time-consuming data transmissions
between CPU and GPU, as noted in Section 4.3, is under further
investigations with various methods, including the CUDA streaming
technology, which will improve the transmission efficiency. The

development of multichannel spectral data handling capabilities, as
well as the corresponding I/O optimization works are still underway.
And the final integration of HCGrid to the data reduction pipeline of
FAST telescope will also be implemented in the near future.
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Winkel B., Kerp J., Flöer L., Kalberla P. M. W., Ben Bekhti N., Keller R.,
Lenz D., 2016a, A&A, 585, A41
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